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ABSTRACT

The kinetic equation governing the evolution of a non-axially symmetric
velocity distribution function of plasma particles in a uniform magnetic
fileld, including the effects of collisions as well as quasilinear diffusion,
is presented and analyzed. It is shown that, if the test particles' orbits
are straight lines, the kinetic equation reduces to a standard Fokker-Planck
form with friction, collisional diffusion, and quasilinear diffusion
coefficients all expressible in terms of scalar potentials. These potentials
are simple generalizations of Rosenbluth potentials and can easily be used in

numerical solutions of the Fokker-Planck equation.
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I. INTRODUCTION

Current theoretical problems connected with wave heating experiments in
both Tokamaks and Tandem Mirrors1_6 are usually studied on the basis of a
kinetic equation including both collisional effects and quasilinear diffusion.
Since these experiments are usually carried out in the presence of a confining
magnetic field, it is important to take into account the effects of the
magnetic field on collisions and quasilinear diffusion. The most notable
expressions for the collision integral and quasilinear diffusion term suitable
for magnetized plasmas are those derived by Rostoker‘7 and Kennel and
Engelmann, respectively. In both derivations, however, it was assumed that
the distribution functions were azimuthally symmetric about the direction of
the magnetic field. As was first pointed out by Hagger'ty,9 although this
assumption can be justified in several cases of interest, it cannot be imposed
when considering problems of plasma transport transverse to the magnetic
field. Azimuthal variations of the distribution function give rise to
additional terms in the collisional diffusion tensor (see Sec. II below).
That these terms importantly contribute to the ccefficients of spatial
diffusion across the magnetic field was first shown by Rostoker‘10 for the case
of Maxwellian field particles and later confirmed and generalized in Ref. 11.
A more detailed. exposition is given in Ref. 12. The first objective of this
paper is to examine the expressions given in Refs. 7 and 8 without making the
azimuthal symmetry assumption and to compare the results with recent work on
magnetized kinetic theor‘y.13 The more general kinetic equation is presented
in Section II. Alternative forms of the collision and quasilinear diffusion

operators are discussed in Appendix B.
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Magnetized kinetic equations are, in general, extremely complicated and
numerical computations based on them are usually very tedious even for the
simplest applications.w'15 The second objective of the paper 1is to obtain
from the general kinetic equation presented in Section II a much simpler
magnet i zed Fokker-Planck equation with quasilinear diffusion which is more
suitable for numerical solutions. The analysis is carried out in Section III.
The magnetized collision operator derived {n this section for non-axially
symmetric velocity distribution function provides a simple generalization of
the familiar unmagnetized Fokker-Planck equation16 and can conveniently be
used in the recently developed Fokker-Planck codes,é'17 in which the effects

of the external magnetic field on c¢collisions are usually neglected. The

conclusions are given 1n Section IV.
II. THE KINETIC EQUATION

The time evolution of a nonaxially symmetric distribution function,

r 9,V

fa(!u,t) = fa(va t), of plasma particles immersed in a uniform

1 afl’
magnetic field in the presence of collective collisions and quasilinear

diffusion can be described by a kinetic equation of the form

of
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in which the collision operator, Q%' and the quasilinear diffusion operator,

£
QL are given by
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The vector k, v , vo, v,
- —a —a’ —-RB

coordinates with polar angles x, ¢, ¢ + Qas, Yy and ¢y + Q

and vg are expressed in cylindrical polar
Bs' respectively;
vV=2¢ - X, v =y - x; | and || denote perpendicular and parallel components
with respect to the magnetic field; Y > 0 is the growth rate of the fastest
growing mode satisfying the relation e(k,+p + i) = 0; and gaB(t = Q) is the
initial value of the two particle correlation function.

The expression Q%fa was derived from a kinetic theory based on the BBGKY
hierarchy of equations18 and the quasilinear term Q%Lfa has been obtained

through a straightforward extension of that theory using the usual quasilinear

theory assumptions.19

Alternative forms of the operators 9% and QEL containing infinite sums of
Bessel functions are derived in Appendix A.

ITI. UNMAGNETIZED TEST PARTICLES

The set of equations (1) through (4) simplify considerably if we neglect
the effect of the magnetic field on the test particles and take the limit
2 =+ 0. In this casey - (w - kev )s, k = 3af /avO + k « 3f _/3v and, after
a a - —Q - a = - a -Q

some manipulations, it can easily be shown that the kinetic equation (1)

reduces to the standard Fokker-Planck form
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The scalar potentials hc' 8. and SQL can be derived by integrating (6)

2
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Further simplifications of the potentials hc and g, can be obtained if we
neglect "collective effects" and replace e{k,w) by its static limit

e(k,0) =1 + kD/k . Thus, upon expressing d3k in spherical polar coordinates,

3

d”k = k sin 8 d8 dk dy, one may be able to evaluate the integrals over w, t,

X, and 6 exactly. The algebraic manipulation is carried out in Appendix B and

the results are
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The Fokker-Planck equation (5) with the potentials hc’ 8> and gQL given by
(12), (13), and (11) present the general results of this section. 1If fB is
independent of vy, hc and g, reduce to the previous r'esults.21 Furthermore, it

is easily established that in the limit of vanishing magnetic field (ieq

B
+ 0), z - ktU, HB > ~UV'U.V' where V' =z z a/av8” + X818/8v81+ i/vBl 3/3y, and
(12) and (13) reproduce the familiar Rosenbluth potentials
o, 3 ffs 3
hc=1hr BZROLB lnA»U_dVB (16)
0 3 "3 3
g0 = Un ; e Ry Afo‘Bd v, (7

Although the integrals over k and t in (12) and (13) are not amenable to exact

analytic treatment, they can be evaluated approximately in closed asymptotic

form.22 The results are
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where E:1 is the exponential integral,
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and A = ky/ky. It was shown in Ref. 22 that (18) and (19) reduce to the
results of Ref. 20 if we take fB to be Maxwellian and integrate over d3vB.

IV. CONCLUSIONS

We have presented and discussed in Section II the appropriate magnetized
kinetic equation for nonaxially symmetric distribution functions. Both
collisional effects and quasilinear diffusion are included. The coefficient
of collisional diffusion and quasilinear diffusion possess terms involving the
principal value P(1/w - d:). These terms disappear only if the distribution
functions are azimuthally symmetric about the magnetic fleld or if the test
particles' orbits are straight lines. In the latter case we have shown in
Section III that the kinetic equation reduces to a simple magnetized
Fokker-Planck equation in which the coefficients of friction, collisional

diffusion, and quasilinear diffusion are all expressible in terms of three



scalar potentials. The potentials are simple in form and easily permit

numerical computations to be based on them.
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APPENDIX A: ALTERNATIVE FORMS OF THE COLLISION AND

QUASILINEAR DIFFUSION OPERATORS

Alternative forms of the operators 3% and(QbL containing infinite sums
of Bessel functions may be derived from Eqs. (2) and (3) upon using the

familiar expansions
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and
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Substituting (A1) and (A2) into equations (2) and (3) we find
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If ¢, U, and ¥ are azimuthally symmetric about the direction of the magnetic

field, the x integration becomes trivial and (A3) and (A4) reduce to
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The result (A5) is in agreement with that derived in Ref. 10 for the case of
Maxwellian field particles. Recently, Matsuda13 derived a similar collision
integral using the formalism of Thompson and Hubbard.23 However, the final
result obtained by Matsuda for the case of a quiescent plasma does not include
the terms involving P (1/w - dg), the principal value part of S,- As pointed
out in Ref. 10, these terms drop out only if fa is azimuthally symmetric about
the magnetic field. 1In this case only the real part of §, and the imaginary
part of e contribute to Q%fa and (A3) reduces to the famous magnetized
collision integral.7 Furthermore, if fa is independent of ¢, Eq. (A4) reduces

to the familiar quasilinear diffusion term.8
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APPENDIX B: EVALUATION OF INTEGRALS

We carry out here the integrals over w, t, ¥, and 8 in equations (9) and
(10).
If we approximate e(k,w) by its static value €(k,0) = 1 + ké/kz, we can

trivially perform the integrals over w and t to get
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where kO is the usual cutoff at the inverse of the distance of closest

approach.

The 8 integrals in (B4) and (B5) may easily be reduced to the evaluation

of the integral

2)1/2
1/2

(B6)

m 2
f exp (iq cos 9) JO (p sin ®) sin / d§ = 2 sin (p_* g
0 )

2 2
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Thus using (B6) to carry out the integration over 6 we finally arrive at the

results (12) and (13).
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